Lower and Upper Bounds for Positive Linear Functionals
نویسنده
چکیده
This paper deals with the problem of finding lower and upperbounds in a set of convex functions to a given positive linear functional; that is, bounds which estimate always below (or above) a functional over a family of convex functions. A new set of upper and lower bounds are provided and their extremal properties are established. Moreover, we show how such bounds can be combined to produce better error estimates. In addition, we also extends many results from [7], which hold true for simplices, to results for any convex polytopes. Particularly, we use our result to obtain multivariate versions of some inequalities first given, respectively, by Favard in [3] and Hammer in [14], over any convex polytope. For smooth (nonconvex) twice continuously differentiable functions, we will also show how both the lower and upper bounds could be improved. Finally, we establish a general result concerning error estimates. This seems to suggest a more unified and effective approach for problems of this sort.
منابع مشابه
Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...
متن کاملEstimating Upper and Lower Bounds For Industry Efficiency With Unknown Technology
With a brief review of the studies on the industry in Data Envelopment Analysis (DEA) framework, the present paper proposes inner and outer technologies when only some basic information is available about the technology. Furthermore, applying Linear Programming techniques, it also determines lower and upper bounds for directional distance function (DDF) measure, overall and allocative efficienc...
متن کاملMinimax Estimation of Linear Functionals Over Nonconvex Parameter Spaces
The minimax theory for estimating linear functionals is extended to the case of a finite union of convex parameter spaces. Upper and lower bounds for the minimax risk can still be described in terms of a modulus of continuity. However in contrast to the theory for convex parameter spaces rate optimal procedures are often required to be nonlinear. A construction of such nonlinear procedures is g...
متن کاملBounded-Variable Least-Squares: an Algorithm and Applications
The Fortran subroutine BVLS (bounded variable least-squares) solves linear least-squares problems with upper and lower bounds on the variables, using an active set strategy. The unconstrained least-squares problems for each candidate set of free variables are solved using the QR decomposition. BVLS has a “warm-start” feature permitting some of the variables to be initialized at their upper or l...
متن کاملA Non-linear Integer Bi-level Programming Model for Competitive Facility Location of Distribution Centers
The facility location problem is a strategic decision-making for a supply chain, which determines the profitability and sustainability of its components. This paper deals with a scenario where two supply chains, consisting of a producer, a number of distribution centers and several retailers provided with similar products, compete to maintain their market shares by opening new distribution cent...
متن کامل